Encoding Human and Machine Knowledge for Machine Learning

iMerit is a remarkable company of over 4000 people that specializes in annotating the data needed to train machine learning systems.

I am writing a series of blogs for them on various aspects of machine learning. In my latest blog I explain how ML systems embody both human intelligence and a form of machine ‘intelligence’.

Just as our biology provides the basis for human learning, human-provided ML system designs provide frameworks that enable machine learning. Through human engineering, these designs bring ML systems to the point where everything they need to ‘know’ about the world can be reflected in their parameters.

Analogous to the role of our parents and teachers, training data annotation drives the learning process toward competent action. Annotation is the crucial link between the ML system and its operational world, and accurate and complete annotation is the only way an ML system can learn to perform well.

Author: Tom Robertson

Tom Robertson, Ph.D., is an organizational and engineering consultant specializing in harmonizing human and artificial intelligence. He has been an AI researcher, an aerospace executive, and a consultant in Organizational Development. An international speaker and teacher, he has presented in a dozen countries and has served as visiting faculty at Écoles des Mines d’Ales in France and Portland State University.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s