Learning Without a Teacher

Machine learning applications generally rely on supervised learning, learning from training samples that have been labeled by a human ‘teacher’. Unsupervised learning learns what it can from unlabeled training samples. What can be learned this way are basic structural characteristics of the training data, and this information can be a useful aid to supervised learning.

In my latest iMerit blog I describe how the long-used technique of clustering has been incorporated into deep learning systems, to provide a useful starting point for supervised learning and to extrapolate what is learned from labeled training data.

Author: Tom Robertson

Tom Robertson, Ph.D., is an organizational and engineering consultant specializing in harmonizing human and artificial intelligence. He has been an AI researcher, an aerospace executive, and a consultant in Organizational Development. An international speaker and teacher, he has presented in a dozen countries and has served as visiting faculty at Écoles des Mines d’Ales in France and Portland State University.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: